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Q-1 spectra connected with C under solute atom interaction 
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Abstract 

Internal friction, dynamic modulus (Md), microhardness measurements and X-ray diffraction analyses have been 
used to study the characteristics of C-Cr associates in 11% Cr martensitic steel MANET. 

On the basis of a preferential bond between C and Cr atoms, we discuss a statistical model which may explain 
the formation and stability of C-Cr associates for T<  Tc and their dissolution for T>  Tc. The model is illustrated 
by snapshots obtained by Monte Carlo simulations. Q-1 results show that the temperature T¢, critical for associate 
stability, is about 1450 K. The characteristics of C-Cr associates in as-quenched material depend on cooling 
rate: with slower rates it was found that diffusive motions of solute atoms take place for T> 1270 K playing a 
fundamental role on martensitic transformation. 

1. Introduction 

Segregation and precipitation in Fe--Cr alloys have 
been widely studied for their consequences on me- 
chanical properties, in particular, the ductile-to-brittle 
transition, and on swelling resistance during radiation 
damage. Deviations from the random distribution of 
solute Cr atoms have been examined by M6ssbauer 
spectroscopy [1, 2], small angle neutron scattering 
(SANS) [3, 4], internal friction (IF) measurements [5, 
6] and have been observed directly by field ion mi- 
croscopy [7, 8]. 

IF experiments made by us [9-11] on the 11% Cr 
martensitic steel MANET showed that C-nCr associates 
are present in the as-quenched material. Different types 
of associates correspond to a different number n of Cr 
atoms (from 0 to 6), which occupy the comers of the 
octahedron around a C atom, and are characterized 
by different binding energies for the C atom. As dis- 
cussed in ref. 9, IF spectra can be considered as the 
sum of seven Snoek-type peaks with relaxation strengths 
An depending on the distribution of C-Cr associates. 

It was found that the characteristics of C-nCr as- 
sociates present in MANET steel after quenching and 
their evolution after thermal treatments depend on the 
cooling rate from the austenitization temperature Ta. 
C-Cr associates form in an austenitic field and are 
then inherited by a martensitic structure if diffusion 
processes have no time to produce, during slow cooling, 
a transformation of these structures. The role played 
by C-Cr associates in martensitic transformation and 
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specific mechanisms have been discussed in another 
paper [12]. 

The aim of the present work is to determine the 
temperature range where diffusive processes are ef- 
fective and cause the occurrence of different structures 
in samples cooled at different rates. Another problem 
is to find out the temperature limit Tc above which 
the C-Cr associates are not stable and dissolve. 

2. Experimental details 

The chemical composition of the investigated Cr 
martensitic steel (MANET) is: C 0.17, Cr 10.5, Mo 
0.50, Ni 0.85, Mn 0.60, Nb 0.20, V 0.25, Si 0.32, AI 
0.05, N 0.003, P 0.005 and Fe to balance (wt.%). Before 
quenching, all the samples underwent thermal treatment 
at high temperature for 1800 s: a batch of MANET 
steel was heated at 1348 K (3' field) whereas another 
batch was heated at 1473 K (or+ 3' field). After high 
T treatments, MANET samples were quenched at dif- 
ferent cooling rates (from 150 to 3600 K min-1). 

Experiments were also carried out on samples cooled 
with T profiles characterized by two different cooling 
rates: i/'= 150 K min -1 from the austenitization tem- 
perature T, = 1348 K to Tx and then T= 3600 K min- 1 
from Tx to Ms with 1000 K< Tx ~< 1300 K. 

IF tests were made using the method of frequency 
modulation in the range of temperatures from 300 to 
773 K with nearly constant heating rate (2 K min-1). 
The IF coefficient Q-1 was determined from the log- 
arithmic decay of flexural vibrations with resonance 
frequency f =  250 Hz. The strain amplitude was kept 
below 1 × 10 -6. 
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The MANET steel microstructure was also investi- 
gated by microhardness tests and X-ray diffraction 
(XRD) analysis. XRD spectra were recorded using 
MoKa radiation; precision line profiles were obtained 
by step-scanning with 20 intervals of 0.0050 and counting 
times of 20 s for each step. 

3. Results 

Figure 1 shows Q-a and MJMo curves of MANET 
samples quenched from the 3' field (Ta = 1348 K) with 
different cooling rates: T= 3600 K rain- 1 (a) and T = 150 
K min-1 (b). In both IF spectra the highest peaks are 
those at high T corresponding to C-4Cr for the faster 
cooling rate (a) and to C--4Cr and C-6Cr for the slower 
one (b). The dynamic modulus shows decrements cor- 
responding to the observed Q - 1  peaks with the at- 
tribution of distinct relaxation times to each peak. The 
markers on the figure top indicate the position of Q , -  
peaks for n varying from 0 to 6 in the case of f =  250 
Hz and activation energies H, calculated using the 
model of Sarrak and co-workers [5, 6] as explained in 
detail later on (see eqn. (1)). 

To find the T range where diffusive processes take 
place causing the occurrence of different structures in 
samples cooled with different rate, we have investigated 
the behaviour of samples cooled with T profiles such 
as that in the sketch of Fig. 2. The cooling rate is 
7 ~= 150 K rain - ;  from T~ to Tx and then T= 3600 K 
min-~ from Tx to Ms (645 K). 

Ir'  I ' 
o 3/4\  6 

"i o I I I I I ~ ' ~ ° ' 9  9 _ ~ 1  zo 
x 5 ~ 

0 .9  

- 0 .8  

o l i  I I I I 
300 4o0 soo eoo 700 

T E M P E R A T U R E  (K)  

Fig. 1. Q - I  and MJMo curves of MANET steel after quenching 
from 1348 K with cooling rate T=3600  K min - I  (a) and ~h= 150 
K min -1 (b). 
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Fig. 2. X R D  results of M A N E T  samples cooled from 1348 K 
to Tx with T =  150 K min -  i and then from Tx to Ms with ~ =  3600 
K min -I  as shown in the sketch. Half-height widths /3 of {110} 
XRD lines and ratios between {110} and {211} line intensities, 
which indicate texture variations, are plotted vs. Tx. 
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Fig. 3. Q - t  curves of M A N E T  steel samples cooled from 1348 
K with T profiles sketched in Fig. 2 with Tx = 1073 K (A) and 
Tx = 1173 K (B). 

The results of XRD analysis on MANET samples 
cooled with values of Tx varying from 1000 to 1348 K 
show that significant variations take place only for 
Tx > 1270 K, whereas when Tx < 1270 K the values of 
/311o (half-height line width) and of Ino/I211 (ratio be- 
tween the reflexion intensities) are nearly constant. 
Some Q-1 spectra of samples, which underwent this 
particular quenching, are shown in Figs. 3(a) and (b) 
with Tx equal to 1073 and 1173 K respectively. 

To determine the temperature To above which C-Cr 
associates are not more stable and dissolve, we have 
carried out tests on samples fast-quenched from tem- 
peratures higher than Ta = 1348 K. Figure 4 shows Q-1 
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Fig. 4. Q - I  spectra of MANET samples quenched from T 1 = 1473 
K (A) and 7"l=1443 K (B), which are in y + a  and 3' fields 
respectively. 

curves of MANET samples quenched from T1 = 1473 
K and Tz = 1443 K with T2< TD < T1 (TD is the tem- 
perature dividing 3" and 3'+ a fields). The two Q-a 
spectra are quite different. The sample quenched from 
T2 shows an IF spectrum with a Q-1 peak at n = 4 and 
is similar to the spectrum of Fig. 1 (a) (quenching from 
Ta in 3' field) whereas the other IF curve relative to 
the sample quenched from T1 shows the highest Q-~ 
peak at low T corresponding to n = 0. 

MANET samples quenched from the biphasic field 
(1473 K) have a structure with martensite and ferrite. 
The martensitic zones have a mean hardness of 450 
HV, a value comparable with that of MANET quenched 
from 1348 K, whereas the ferritic zones have a hardness 
of -- 350 HV. 

4.  D i s c u s s i o n  

IF results are discussed on the basis of theoretical 
considerations due to Sarrak and co-workers [5, 6] 
regarding the effects of Cr atoms on the Snoek peak. 
A C atom in an octahedral interstice is surrounded by 
six next-neighbours, which may be either Fe or Cr 
atoms. According to Sarrak and co-workers it is supposed 
that the activation energy Ho for an atom is 20 Kcal 
mo1-1 when only Fe atoms occupy the octahedron 
corners and that a contribution of AH= 3.1 Kcal mol- 
has to be added for every Cr atom which substitutes 
an Fe atom. So we can write: 

H,=no+n All (1) 

with n varying from 0 to 6. 
Neglecting background contribution, the IF spectrum 

is thus given by: 

6 
Q-I(T) = E Q . - I ( T )  

n~O 

A. [[Ho+n,~I~ 11 1 ) ]  
(2) 

where T, is the temperature of the nth peak. 
Relaxation times r, can be expressed as: 

r, = %-exp(-H,/kT) (3) 

with ro=5X10 -15 s. Relaxation strength A can be 
assumed to be proportional to the C concentrations 
C, in different types of octahedra. As discussed in ref. 
9, jumps are taken into account for their contribution 
to IF only when they occur between equivalent in- 
terstices, i.e. interstices surrounded by the same number 
of Cr atoms. In general there is good correspondence 
between calculated and measured Q,- 1 peak positions 
even if, in some cases, we observed small shifts. 

Figure 1 shows that after fast cooling (2#=3600 K 
min- 1) the clusters of C-4Cr associates are predominant 
whereas with slow cooling (;0= 150 K rain -1) a com- 
parable number of clusters with C-6Cr is present in 
MANET steel. To understand at which temperature 
the diffusive processes take place, we have to consider 
the XRD and IF results illustrated in Figs. 2 and 3. 

IF spectra of samples quenched slowly at J '= 150 K 
min -1 to Tx=1073 K and to Tx=1173 K are sub- 
stantially similar to the IF spectra obtained from samples 
cooled slowly to Ms with main Q, - 1 peaks at n = 4 and 
n = 6. This result means that the processes responsible 
for the differences observed in samples cooled at dif- 
ferent rates occur at T> 1100 K and is in agreement 
with XRD analysis, which shows changes of texture 
and of half-height line width /3 only for Tx values 
higher than 1270 K. 

The temperature range between Ta =1348 K and 
T= 1270 K is critical for the cooling rate: cooling profiles 
with different slopes in this T range produce martensite 
with different C-Cr clustering and thus with different 
properties and stability as shown in refs. 9, 11 and 12. 

The existence of C-Cr associates in the 3' field may 
be related to the energy 5J-/*, which favours C to Cr 
aggregations. The effect of M-/* on C and Cr distri- 
butions has been examined by means of Monte Carlo 
simulations, for which reference is made to books of 
Binder and Hermann [13, 14]. Since C and Cr have 
quite different diffusivities in Fe lattice, two stages are 
considered: 

(a) the first is one of rapid diffusion of C atoms 
with the formation of C-Cr associates (Fig. 5(a)); 

(b) the second is one of slower diffusion of the free 
Cr atoms with the formation, at C-Cr associates, of 
Cr aggregates (Fig. 5(b)). 
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Fig. 5. Snapshots representing Cr (O) and C (O) distributions 
after 1000 random walk jumps of interstitial C with immobile 
Cr (A) and after 2000 random walk jumps of Cr with non-mobile 
C-Cr associates (B). The lattice sites occupied by the Fe atoms 
are not marked. The results of computer simulation by Monte 
Carlo method for the probability of jumping for neighbouring 
C-Cr atoms show it is proportional to exp ( - Tc/T) = exp ( - 1.15) 
with periodic boundary conditions (taken from ref. 9). 

5 .  C o n c l u s i o n s  

The results of the present work can be summarized 
thus: 

(1) At the temperature used for austenitization treat- 
ment (Ta --- 1348 K) the MANET steel shows a structure 
with non-random distribution of Cr atoms, which is 
characterized by the presence of stable C-Cr associates. 
Computer simulations based on the Monte Carlo method 
show that the formation of C-Cr associates is a pre- 
liminary step to the formation around them of more 
extended aggregates of Cr atoms. 

(2) The cooling rate plays a role in the characteristics 
of C-Cr associates present in as-quenched material; 
the diffusive processes occurring with slower cooling 
take place for temperatures higher than = 1270 K. 

(3) The temperature To which is the stability limit 
for C-Cr associates, is = 1450 K. 
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The snapshots were obtained with periodic boundary 
and probability of jumping from bound positions pro- 
portional to exp(-AH*/kT),  i .e.  exp( -Tc /T)  being 
T c  = A H  * /k .  

Figure 4 shows that IF spectra of samples quenched 
from 7 and 7+  a fields are quite different, in particular, 
the Q-1 curve of a sample quenched from T z  = 1473 
K is characterized by a high peak at low T (n =0),  
which is the classical Snoek peak exhibited by Fe-C 
alloys. This result indicates that C-Cr associates are 
no longer present when T= 1473 K and thus the tem- 
perature Tc is in the range 1445-1473 K, very close 
to the separation point between 7 and 7+  a fields. 

Confirmation comes also from XRD analysis, which 
shows that the value of /31~0 is greater for samples 
quenched from a 7 field (=0.13 °) than for samples 
quenched from an a +  3, field (=0.11°). Of course, the 
higher value of/3 is connected with the inhomogeneities 
of Cr atom distribution. Taking Tc = 1450 K, we obtain 
AH*=2.9 Kcal mo1-1, a value comparable with the 
value of AH considered for the different Q,-1 peaks. 
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